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ABSTRACT

Accretion disks can be found in a variety of astrophysical systems, such as around young stars and
black holes. It has been long proposed that fluid instabilities can generate the turbulent viscosity
required for driving outward angular momentum transport in accretion flows. In this project, we
investigate the dynamics of an accretion disk torus using the new magnetohydrodynamics (MHD)
code, Athena++ . First, we examine the hydrodynamical behavior of the torus when perturbed
by small non-axisymmetric modes and show that it gives rise to a global fluid instability known
as the Papaloizou-Pringle Instability (PPI). We numerically simulate a slender torus and track its
evolution into non-linear regimes. We experiment with various physical and numerical parameters to
explore how it affects the torus simulation. By computing the mode amplitude in the linear regime
before saturation, we can quantify the mode growth and compare the results with the predicted
analytical mode growth. Then, we investigate the behavior of a torus initialized with a weak toroidal
magnetic field and examine the effects of magnetorotational instability (MRI). Using high-resolution
simulations, we are able to resolve the higher order modes of the MRI. We computed the mass accretion
history of the instabilities and found that MRI is significantly more effective in transporting the
angular momentum outward than compared to PPI. Convergence with previous results in literature
demonstrates the robustness of Athena++ in handling both types of instabilities in accretion disk
tori.
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1. INTRODUCTION

Accretion disks can be found in a wide variety of astro-
physical systems and size scales from protostellar disks
around young stars to galactic discs around AGNs. If
angular momentum is conserved in these systems, it is
necessary for the angular momentum to transport out-
ward in order for material from the disc to accrete onto
the central object. One of the central questions in accre-
tion disc physics is the possible mechanisms that enable
outward angular momentum transport in discs. Obser-
vational signatures of high-energy jets and outflows are
evidence of such transport at work. On the theoretical
front, most of the efforts have been directed towards the
development of better numerical scheme and codes to
realistically simulate such systems.
In this project, we use the new hydrodynamic, mag-

netohydrodynamics (MHD) code, Athena++ , to study
two types of fluid instabilities in accretion disk tori. The
first is the Papaloizou-Pringle Instability (PPI), a type of
global, hydrodynamical instability that occurs in accre-
tion tori with constant angular momentum throughout.
The second instability we examined is the MRI, which is
a local, MHD instability that has gained considerable re-
cent interest due to its effectiveness in providing outward
angular momentum transport in the disc.
In Section 1, I will describe how we initialize the PPI

simulation and the numerical methods that we use to
simulate these systems. Section 2 details the basics setup
for our MRI study and explore the effects of changing the
grid resolutions. Finally, Section 3 highlights the nature
of these instabilities by comparing their mode growth
and mass accretion rate history.

2. PAPALOIZOU PRINGLE INSTABILITY

An accretion tori can be realized in accretion disk near
its Eddginton luminosity, where the torus is in hydro-
static equilibrium between radiation pressure and inward
gravitational force. In high accretion rate or high energy
systems, such as AGNs and qusars, radiation near the
poles creates a hollow region near the central accreting

object and results in the toroidal geometry. In scenarios
of discs with very high internal temperature, the pressure
gradient can get so large that the rotational profile de-
viate significantly from a Keplerian disk. In Papaloizou
and Pringle (1984), the authors consider a torus with a
rotational velocity profile that sets up a constant angular
momentum. By conducting a linear stability analysis,
they found that non-axisymmetric perturbations result
in exponential mode growth on the order of dynamical
timescale, resulting in the global, hydrodynamical insta-
bility known as the Papaloizou-Pringle Instability (PPI).
Further studies conducts linear stability analysis of the
case of the slender torus using a set of 2D height-averaged
equations. These are applicable when examining lower
order modes on the principal branch where the scaled
azimuthal wavenumber β < 0.59, since the torus is in
vertical hydrostatic equilibrium. 1

However, linear stability analysis breaks down af-
ter Papaloizou-Pringle instability arises and the system
becomes nonlinear. In this nonlinear regime, three-
dimensional numerical simulations are required to track
the evolution of the torus. Hawley (1990) found that the
instability breaks the torus up into independent “plan-
ets” , which is a more stable configuration than the insta-
bilities in the torus. Even though the PPI was originally
proposed as a possible mechanism for generating the tur-
bulent viscosity required for outward angular momentum
transport, it is not as effective as the MRI and requires
an idealized initial setup for the instability to occur that
is unlikely to realize astrohphysical settings.
Nevertheless, the PPI is still of academic interest in

our study since there exist an analytical prediction for
the mode growth Goldreich et al. (1986), therefore it
serves as a well-studied test case to with which we could
compare the results of our Athena++ simulations. As
noted in Hawley (1991), numerical diffusion tends to sup-
press mode growth and stabilizes the torus. Therefore,

1 The more general case of a non-uniform angular momentum
torus is studied in Papaloizou and Pringle (1985) which addition-
ally give rise to Kelvin-Helmholtz-like instabilities.
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this serves as a robust test case for the hydrodynam-
ics scheme in Athena++ . In this project, we reproduce
the Hawley’s 3D finite difference simulation with a higher
grid resolution and using more accurate hydrodynamics
schemes in the new Athena++ code.

2.1. Numerical Methods

To observe the effects of how the instability is affected
by different parameters, we first conducted a series of
low resolution (643) numerical experiments to qualita-
tively examine the behavior of the m=1 mode. In order
to track its evolution, the simulations are carried out
far into the nonlinear regime until the pressure maxi-
mum spirals into the innermost boundary. The results
are summarized in Table 1. R0/RB, the ratio between
the radius to pressure maximum and to inner boundary,
defines the radial dynamic range of the grid. All the
models uses an adiabatic equation of state where γ=5/3.
trun is denoted in units of orbits. The computation is
carried out on Hopper, NERSC’s Cray XE6 System and
Edison, a Cray XC30 System.

2.1.1. Initial Conditions

As derived in Papaloizou and Pringle (1984), the initial
conditions of the torus satisfies hydrostatic equilibrium.

−∇P
ρ

−∇ψpm +Ω2ω̃ˆ̃ω = 0 (1)

where ψpm is the pseudo-Newtonian potential used in
Blaes (1987)
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−GM
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Here we approximate the Schwarzschild radius RG = 0
since RG << R0 of the torus. The torus density that
satisfies this condition is given by:
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The cells in each r-θ slice of a torus is divided into a
more refined 10×10 subgrid to better enforce the equi-
librium condition in the initial condition. We ensured
the stability of the torus by evolving it for over 30 or-
bits without perturbation and showed that there is no
unstable modes.
The torus pressure is computed directly from the torus

density, as given by the polytrope equation P = Aργ .
The constant A can be computed by setting ρmax = 1,
and therefore

A =
(d− 1)

2d(n+ 1)
.

The gas density outside the torus (d0) is chosen to be
10−4 and an ambient pressure profile of P=d0/r is setup
in the initial condition. At the boundary of the torus, we
compute the torus density compare it with d0 and take
the larger of the two to be the density. This smoothed
out the discontinuities due to the piecewise definition of
the physical quantities at the boundary of the torus, as
shown in the radial profile in Fig. 1 .
A pressure and density floor of either 10−8 and 10−6 is

added in the simulations to prevent numerical artifacts
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Figure 1. Density and Pressure profile in the initial condition
taken from a θ = π/2 slice.

of overflowed floating point that may affect our simu-
lations. Extremely low density gas can appear outside
of the torus, when much of the gas has flowed out of the
computational domain. The pressure and density floor is
several orders of magnitude less than the torus pressure
and density, so it is physically negligible in our consider-
ation of the instability.

2.1.2. Boundary Condition

Global instabilities such as the PPI investigated here
are often strongly dependent on the choice of bound-
ary condition. Here we adopt the natural choice of peri-
odic boundary condition in the ϕ direction and outflow
boundary condition in the outer radial boundary. The
inner boundary condition was harder to chose since it
can strongly affect the torus during stages of its nonlin-
ear evolution, when the torus spirals in towards the inner
boundary. Our choice of the R0/RB parameter on the
inner boundary of the mesh isolates the central singular-
ity and avoids regions of high gravitational potential as
the high infall velocities limit the time steps determined
by the Courant Friedrichs Lewy (CFL) condition.
We tested out four combinations of the inner boundary

condition by either setting outflowing VR or VR=0 and
either a corotating boundary or Vθ=Vϕ=0. The bound-
ary conditions in Run B, D, E restricted the gas from
spiraling inwards at later timesteps and results in high
velocities that caused the simulation to terminate. Since
excess free energy from shearing can drive other types
of fluid instabilities, in order to distinctly observe PPI
we need to enforce the corotating boundary condition,
so that the ghost zone moves with the boundary cells
in the active computational domain. Along with setting
the outflow radial velocity as zero as the gas hits the
inner boundary, the resulting simulation alleviated the
high velocities previously observed at the boundaries.

2.2. Numerical Results

2.2.1. Effects of Distortion Parameter

In Run F, G, we tried using two different distortion
parameters that determines the shape of the torus. The
value of d=1.1773 is derived from the rin and rout in the
A2 slender torus model in Hawley (1991). For qualitative
comparison, undistorted torus is smaller with a nearly-
circular cross section as d→1. We find that the behavior
of the two runs showed similar evolution, however, all
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Figure 2. Z-slice of a 3D simulation of the torus showing spiral
waves at the nonlinear regime (t=32 orbits).

the sequence of events in Run F occurred earlier in Run
G than in Run F.

2.2.2. Effects of Logarithmic Gridding

Increasing the radial dynamic range using logarithmic
gridding puts more gas into the computational domain so
that the ambient conditions remains realistic for a longer
period of time after the instability begins the drive the
gas outside of the computational domain. Along with
the proper boundary conditions as discussed in Sec 2.1.2,
we no longer observe low density gas below the 10−6

density floor. We attempted at different multiplicative
factors of logarithmic gridding in Run H, I, J and found
that a factor of 1.03 is sufficient for covering the large
radial domain. In Run I and J, the large logarithmic
factor results in very fine grids near the inner boundary.
Since there is high infall velocities due to the pseudo-
Newtonian potential, the CFL condition strongly limits
the timesteps of the simulation. In the future, Static
Mesh Refinement (SMR) could be used to increase the
resolution near the torus mid-plane region.

2.2.3. Effects of Mode Initialization

We describe two ways of initializing perturbation in
the simulation to trigger the PPI: random initialization
and eigenmode initialization. As done in Hawley (1991),
for the random initialization, we added a unique, ran-
dom number scaled by the amplitude to the gas pressure,
which effectively adds enthalpy perturbation to each grid
zone. For the eigenmode initialization, we added a per-
turbation of the form A0sin(mϕ) in the ϕ-component of
the momentum, where A0 is the amplitude. The com-
parison between the two initializations can be seen in the
mode growth plot in Fig. 7 and 8.
We begin by initializing with amplitude of 1% on the

m=1 mode. However, the strong perturbation results in
violent, nonlinear evolution within an orbital time. This
makes the mode growth analysis difficult as the analytical
mode growth derived by Goldreich et al. (1986) is based
on a linear stability analysis, which does not give accu-
rate prediction in the nonlinear regime after tsaturation.
The 1% perturbation was acceptable when using the ran-

dom initialization method because the amplitude of the
perturbation does not directly translate into 1% ampli-
tude for the m=1 mode growth. In the random initial-
ization, any frequency mode can be possible, so the per-
centage of the actual amplitude that contributes to one
specific mode amplitude is likely to be lower. There-
fore, we decreased the amplitude to 0.001% for the m=1
eigenmode in Run M to conduct the analysis. In both
types of initialization, we see strong m=1 mode growth
and subsequent higher-order mode growth due to mode
coupling.

2.2.4. Effects of Resolution

We introduced static mesh refinement in Run N which
yielded additional refinement factor of two around the
torus. When compared with the uniformly-gridded Run
O, we find that the density contours qualitatively con-
verges. The mode growth in m=1 and 2 modes and satu-
ration time also converges. However, the saturation level
and the mass accretion rate differs by about a factor of
2∼3 as shown in Fig. 3 and 4.
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a factor of 3.

One possible reason for this discrepancy is that since
we are adding random perturbation on a per-cell basis
and different grid resolution (i.e. cell sizes) near the torus
region results in different perturbation during initializa-
tion. In addition, the higher mass accretion rate in the
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Run Grid ∆r Rin, Rout d Perturbation Inner B.C. (r, θ/ϕ) trun [orbits] p/d floor

A 256× 96× 256 1.03 0.2,5.0 1.173 Random,1% 0,corotating 33.423 10−6

B 64× 64× 64 1 0.2,2.5 1.173 Random, 1% 0,0 14.961 10−8

C 64× 64× 64 1 0.2,2.5 1.173 Random, 1% 0,corotating 31.672 10−8

D 64× 64× 64 1 0.2,2.5 1.173 Random, 1% outflow,0 8.117 10−8

E 64× 64× 64 1 0.2,2.5 1.173 Random, 1% outflow,corotating 7.003 10−8

F 64× 64× 64 1 0.2,2.5 1.125 Random, 0.1% 0,corotating 156.767 10−8

G 64× 64× 64 1 0.2,2.5 1.173 Random, 0.1% 0,corotating 112.841 10−8

H 96× 64× 128 1.03 0.2,5.0 1.173 Random, 1% 0,corotating 56.818 10−6

I 96× 64× 128 1.05 0.2,5.0 1.173 Random, 1% 0,corotating 38.515 10−6

J 96× 64× 128 1.09 0.2,5.0 1.173 Random, 1% 0,corotating 1.592 10−6

K 256× 96× 128 1 0.2,2.5 1.173 Random,0.1% 0,corotating 24.048 10−8

L 96× 64× 128 1.03 0.2,5.0 1.173 m=1, 0.1% 0,corotating 1.76 10−6

M 96× 64× 128 1.03 0.2,5.0 1.173 m=1,0.001% 0,corotating 3.18 10−6

N 192× 128× 128(+one level SMR) 1 0.2,2.5 1.173 Random, 1% 0,corotating 27.375 10−6

O 192× 128× 128 1 0.2,2.5 1.173 Random, 1% 0,corotating 36.128 10−6

Table 1
Selected parameters used in PPI simulations.

Run Grid ∆r Rin, Rout trun [orbits]

A’ 192× 256× 1 1.03 0.2,5.0 8.594
B’ 192× 128× 128 1 0.2,2.5 27.375
C’ 192× 128× 128 1 0.2,2.5 7.099
D’ 384× 256× 256 1 0.2,2.5 10.027

Table 2
Summary of the computational runs for MRI simulations. The
run times are generally shorter than in PPI simulations since

MHD calculations are computationally expensive. In addition, it
is not necessary to evolve the the torus for that long because the

instability saturates at around 3 orbits and the behavior
qualitatively looks the same in the non linear regime.

higher resolution run may suggest that the lack of reso-
lution suppresses higher-order mode amplitudes, as seen
in the lower resolution Run A in Fig.3. Despite using
a significantly higher resolution run compared to what
had been done previously in Hawley (1990) and Hawley
(1991), the lower mode amplitudes in the low resolution
may not be sufficient to resolve the higher order modes.
However, a more comprehensive resolution study is re-
quired to validate this hypothesis.

3. MAGNETOROTATIONAL INSTABILITY

The magnetorotational instability (MRI) is a local,
MHD instability that occurs in a differentially-rotating
accretion disks where disk is threaded by a weak sub-
thermal, poloidal magnetic field and the angular veloc-
ity is decreasing radially outwards. The MRI is now the
widely accepted mechanism for outward angular momen-
tum transport in many types of accretion disk systems.

3.1. Numerical Methods

Since the MRI is a local instability, many studies have
been dedicated to study MRI in a shearing-box approxi-
mation. Here, we perform global simulations enable MRI
to sample larger wavelength in r and ϕ directions. The
computational runs are summarized in Table 2. We used
the optimal parameters as discussed in Sec. 2.2 from the
PPI run in the MRI simulations: randomly initialized
perturbation at 1%, distortion parameter of 1.173, pres-
sure and density floor of 10−6, a corotating boundary in
θ, ϕ and outflow boundary condition in the inner radial
boundary.

3.1.1. Initial Conditions

To initialize an azimuthal field, we make use of the
three degrees of freedom to set a convenient gauge of

Ar = Aϕ = 0 and Aϕ = ρ2

β0
. We define initial condi-

tions using the magnetic scalar potential at cell-corners
and then compute B(r, θ) by ∇×A, rather than directly
defining the initial condition using the face-centered mag-

netic fields to ensure the ∇ · B⃗ = 0 condition is satisfied
in the discretized form. Using Stoke theorem to convert

the B⃗ equation into an integral form,∫
B⃗ · dS⃗ =

∫
A · dl (4)

we can get the magnetic field by the simple discrete form:

B⃗ =
1

∆S
[Aϕ,+l+ +Aϕ,−l−]. (5)

β0 is a user-defined value for the plasma beta describ-
ing the ratio of gas-to-magnetic pressure. To maintain
the initial hydrostatic equilibrium of the torus, we need
to chose a β such that the initial azimuthal magnetic field
is weak. Additionally, β is important in determining the
number of zones required to resolve MRI per scale height
of the system. The instability requires a rotational veloc-
ity profile where the inner portion of the disk is rotating
faster than the outer part of the disk, as explained in
Sec.4.1.

3.2. Numerical Results

3.2.1. Effects of Resolution

Since the MRI is dominated by higher-order modes,
as shown in Sec.9, it is crucial that our grids resolve to
scales smaller than these in order for to resolve these
short wavelength modes. The scale height (H) in our

simulation decreases radially outward as
√

2/r. We
use the zones-per-scale-height formula in Hawley et al.
(2011) to compute the minimum zones (N) required
in the r direction to resolve the MRI and obtained
Nϕ=223.713. Therefore, we ran a high-resolution sim-
ulation with 384 × 256 × 256 on 768 processors. How-
ever, we did not find qualitative differences between the
the higher resolution Run D’ and lower resolution Run
C’ because all the modes were growing at approximately
the same rate. Quantitatively, our linear-fit and Eq. 13
methods were unable to give an accurate estimate of the
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mode growth rate because the instability saturates too
quickly at around three orbits. Therefore we could not
test the effect of resolution on the development of MRI.
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Figure 5. Mode growth rate and saturation level of the first three
modes in Run A’ and D’ qualitatively converges.

4. COMPARISON OF INSTABILITIES

4.1. Physical Mechanism

PAPALOIZOU-PRINGLE INSTABILITY
Based on the torus boundaries on the z=0 plane in (Pa-
paloizou and Pringle 1984),

ω̃± =
ω̃0

1∓
√
1− 1

d

(6)

where d is the distortion parameter, we obtained
(ω̃+, ω̃−) = (1.623, 0.723) for the case of a slender torus.
Therefore, the scaled azimuthal wavenumber β is related
to the wave mode by β = 0.45m. For the m=1 modes,
since the condition β < 0.59 is satisfied, it falls into the
class of unstable modes known as the principle branch
which has its corotation radius Rc at pressure maximum.
Goldreich et al. (1986) showed that these can be rea-
sonable approximated with a set of 2D height-integrated
equations. The corotation radius (Rc) is the radius where
the angular speed (Ω)is equal to the pattern speed(Ωp),
where the pattern speed is described Re(ω)/m. Rc sep-
arates the inner region of the torus with negative action
the outer region with positive action.
For the principal modes, the instability comes from the

coupling between two traveling surface waves launched
from the inner and outer edge of the torus. More gen-
erally, for higher-order modes, Narayan et al. (1987) de-
scribes amplification mechanism where the transmitted
and reflected wave gets trapped near the evanescent re-
gion around Rc. With a satisfied phase condition, this
amplification mechanism creates a feedback loop that re-
flects its own output back into the system, thus trigger-
ing the unstable mode growth seen in PPI. The principal
mode is a special case of higher-order modes where the
whole torus is the evanescent region, so the only waves
that could interact and grow unstable are the traveling
surface waves near the perfectly reflecting boundaries of
ω̃±.

MAGNETOROTATIONAL INSTABILITY
The MRI can also be explained from the linear stability

analysis of the MHD equations, as detailed in the review
paper by Balbus and Hawley (1998). The analysis yields
a stability criterion for the rotational velocity profile:

(k⃗ · u⃗A)2 > − dΩ2

dlnR
(7)

dΩ2

dlnR
> 0 (8)

Simplifying this by chain rule,

Ω
dΩ

dlnR
> 0 (9)

In disks which rotates in one direction throughout,

dΩ

dR
> 0 (10)

This suggest that the instability arises whenever the an-
gular velocity is decreasing radially outward, which is
true for observed Keplerian disks.

Magnetic
Tension

Magnetic
Tension

1. 2.

Figure 6. A simplified picture showing how the MRI works.

This criterium makes sense in terms of the mechanical
picture as shown in Fig. 6. The magnetic tension force
exerted by the poloidal magnetic field line connecting
the two fluid elements exert an effective angular momen-
tum transfer outwards. Therefore, the inner fluid ele-
ment drops to a lower orbit and the outer fluid element
is boosted up to a higher orbit. The larger separation
distance between the fluid elements result in a stronger
magnetic tension and the process eventually snowballs
into a runaway instability.

4.2. Mode Growth Analysis

In order to quantify the results of the numerical sim-
ulation, we conduct the mode growth analysis and com-
pare our result with the 3D numerical simulations done
in Hawley (1990) and Hawley (1991) and the analytical
growth rates given by Goldreich et al. (1986). To moti-
vate the analysis of the eigenmodes, we first consider the
physical mechanisms that give rise to PPI summarized
in Narayan and Goodman (1989).
The PPI give rise to unstable was modes that grows

exponentially in time. We quantify the mode amplitudes
by conducting a Fourier decomposition in the ϕ direction.
The number of zones in the ϕ direction was chosen for
this purpose to powers of two in order to speed up the
Fast Fourier Transform (FFT) algorithm used to extract
the modes.
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We use a Python package h5py to read in the simu-
lation data stored in HDF5 format per timestep. For
every meshblock the datafile, we first compute the mass
enclosed per cell in each ∆ϕ slice by :

Menclosed
∆ϕ

= ρ∆Vcell = ρr2sinθ∆r∆θ (11)

D(ϕ) =
∑
r

∑
θ

ρ
∆Vcell
∆ϕ

(12)

Due to the z-ordering in Athena++’s internal data struc-
ture, we use the the logical locations stored in each mesh-
block and sum over all the mass in a particular r−θ slice.
This yields a 1D-array of length 128 containing the inte-
grated mass per slice, D(ϕ). Then by Fourier decompos-
ing the wave into 128 bins, we compute the magnitude

by |A| =
√
Ã · Ã∗.

We compute the mode growth rate by a linear least
square fit on the log-amplitude plot and separately by
Eq.13. Since we assume the form of the physical quantity
to be q(t) = q0e

t
τ in the linear stability analysis, we can

compute the mode growth by :

τ =
∆t

log(x(t)x0
)

(13)

We use the crude method of chi-by-eye to select the range
of the linear region and find that these two methods yield
simmilar results; however, Eq. 13 can be an inaccurate
estimate if the start and end point lie near a local ex-
tremum.

PAPALOIZOU-PRINGLE INSTABILITY
From Fig. 7 and 8, we see a very strong m=1 mode
growth in the linear regime. At around 6 orbits, the
m=1 mode begins to couple with the higher order modes,
resulting in a sharp subsequent mode growth. The insta-
bility saturates around 10 orbits. This saturation level
is consistent over all the resolution that we tested, which
suggests a physical origin of the saturation. One pos-
sible reason that explains the saturation suggested by
Gat and Livio (1992) is the loss of an inner reflecting
boundary at the onset of accretion and development of
the spiral pressure wave, which disrupts the corotation
amplification mechanism. Table 3 summarizes the mode
growth comparison with Hawley (1990) for the random
and eigenmode (m=1) initialization.

Random Initialization Eigenmode Initialization

m=1 0.8679 0.855 0.2667 0.2621
m=2 0.4701 0.211 0.5505 0.5100
m=3 0.3756 0.254 0.6828 0.6820

Table 3
Left-flushed values are the mode growth in Run J, M respectively;

right-flushed values are mode growth in Hawley (1991).

MAGNETOROTATIONAL INSTABILITY
We were unable to compare the mode growth rates with
other previous studies because 1) most of the MRI works
that we reviewed were shearing box simulations which
did not contain global ϕ mode information and 2) since
the MRI saturated really quickly it was hard to find an
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Figure 7. Run M’s mode growth of the m=1-5 modes.
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Figure 8. Run J’s mode growth of the m=1-5 modes.

reliable linear regime to compute the mode growth rate.
Even though the ϕ-direction mode growth analysis fails
to characterize some of the higher mode growth for MRI
in the r-θ direction, we nevertheless use Fig. 8 to com-
pare with with the dominant m=1 mode in thePPI case
of Fig. 3 and demonstrate the importance of the higher
order modes in contributing to MRI.

0 1 2 3 4 5 6

t [orbits]

-14

-12

-10

-8

-6

-4

-2

0

lo
g
e
(M

o
d
e
 A

m
p
lit

u
d
e
)

MRI with Random Initialization at 1%

m=1

m=2

m=3

m=4

m=5

m=6

m=7

m=8

m=9

Figure 9. Mode growth of the m=1-9 initialized for the MRI case.

4.3. Mass Accretion History

We compute the accretion onto the inner boundary by
computing the mass flux that incidents the innermost
cells.

dM

dt
=
∑
j,k

ρvr∆Si,j±,k (14)
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As shown in Fig.10, the mass accretion rate history in our
MRI simulation qualitatively agrees with the accretion
rate history in Jiang et al. (2014). In addition, we find
that the mass accretion rate in the MRI case is much
stronger than that of the PPI.
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Figure 10. The mass accretion rate onto the inner boundary that
results from the instabilities.

5. CONCLUSION

In this study, we use the Athena++ code to investigate
the effects of magnetorotational instability (MRI) and
Papaloizou-Pringle Instability (PPI) on accretion disk
tori. We investigate a variety of physical parameters such
as the effects of torus distortion, different methods for
mode initialization and found that the simulation results
agrees with the physical picture of how the instability
works. Other physically interesting parameter to con-
sider but not investigated in these study is the effect of
the plasma beta and compressibility on the stability of
the torus, as has been done in previous analytical and
numerical studies.
We make use of various code features in Athena++

such as logarithmic gridding and static mesh refinement
to improve the simulation and minimize numerical ef-
fects. We investigate the numerical effect of changing the
resolution, boundary conditions, the density/pressure
floor, and the size of the computational domain and find
that the physical outcomes of the instabilities qualita-
tively converges. However, for the PPI case, our quanti-
tative mode growth analysis showed that only the mode
growth rate and the saturation time converges, but not
the mass accretion history and the saturation level, which

suggests that a greater resolution may be necessary for
capturing higher order modes. Nevertheless, the general
success of these simulations in reproducing the analyt-
ical and numerical results found in previous literature
demonstrate the robustness of the Athena++ code in
handling these two test cases.
From the mass accretion history of the two instabilities,

it is evident that the MRI is significantly more effective
in angular momentum transport than PPI. In addition,
the setup of MRI is more astrophysically-realizable than
that of the constant-angular momentum condition en-
forced by PPI. The MRI simply requires a weak toroidal
magnetic field and outwardly decreasing angular veloc-
ity condition which is physically-plausible in the micro-
Gauss-level magnetic fields in the interstellar medium
and observed rotational profiles of Keplerian disks. The
combination of these factors explains the recent interest
in studying the MRI as a mechanism for generating the
turbulent viscosity necessary for outward angular mo-
mentum transport in accretion disk systems.
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